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Abstract
The rapidity of thermalization processes within an excited electron gas is
determined by the rate at which substantial energy exchanges can occur. To
calculate the rate of such processes, as distinct from calculating the rate of
scattering (which is the rate usually calculated), it is necessary to take into
account the dynamic nature of screening. It is shown that this can be carried
out analytically for the case of a non-degenerate electron gas in a 2D quantum
well within the random-phase approximation. The results indicate resonant
screening and anti-screening effects associated with the response of the polar
lattice in a semiconductor. These effects are illustrated in the case of GaN at
77 K.

The rate at which an excited electron gas thermalizes is an important component determining
the speed of response of electronic and optoelectronic devices, and one that has to be taken into
account in interpreting phenomena associated with fast photoexcitation. A large amount of
experimental and theoretical work has been carried out over the last 20 years, mainly on bulk
GaAs and GaAs/AlGaAs quantum wells [1, 2]. Experiments have included light-scattering
and coherent techniques that measure dephasing times, and time-resolved measurements of
photoluminescence or absorption that measure energy-relaxation times. All experiments
involve both electron and hole populations, so it is not always possible to disentangle electron–
electron (e–e) rates from electron–hole (e–h), electron–plasma (e–pl) and electron–LO-phonon
(e–ph) rates. Furthermore, these rates are density dependent and may therefore vary throughout
an experiment. Dephasing times are observed to be some tens of femtoseconds whereas
the observed energy-relaxation time for (e–ph) is of the order of hundreds of femtoseconds.
Theoretical work has often assumed a static-screening model with rates computed numerically
using Monte Carlo techniques [3–7]. Rates calculated this way are only for collisions involving
small momentum and energy transfers. More recent studies on photoexcited populations have
shown that the assumption of static screening underestimates the energy-relaxation rate and
that dynamic screening should be taken into account [8–11]. The effect on the dephasing time
in photoexcited populations can be to reduce the time by a factor of 2 [10] and to explain the
behaviour of the exciton energy at strong excitation [11]. The effects of dynamic screening have
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also been studied for the case of electron–electron interactions involving plasmon emission in
quantum wells [12, 13].

The intensive numerical nature of these studies, however necessary to relate a complex
situation to what is observed in real experiments, tends to obscure the physics of the processes
that are involved. It is the aim here to focus on a simpler system than is usually treated. Thus, it
is assumed that only one type of carrier is involved in low concentration, and it is assumed that
plasmon interactions can be ignored. We therefore can present an analytical model of energy
relaxation via e–e scattering in a non-degenerate gas, so that the twin rôles of dynamic lattice
screening and dynamic electron screening can be clearly illustrated. It is shown that energy
exchanges above the TO phonon energy are substantially anti-screened, and at all substantial
energy exchanges the rate is significantly greater than that predicted by theory that assumes
static screening.

A fundamental assumption, adopted here, is that e–e collisions are essentially two-body
processes. This assumption is valid as long as the screening length is less than the average
distance apart of the electrons, and this imposes a lower limit to the density, which is of the order
of 8×1010 cm−2 at room temperature, less at lower temperatures. (There is numerical evidence
that the two-body model is inadequate at a density of 2 × 1010 cm−2 in GaAs at 300 K [14].)
In a two-body collision an incident electron, wavevector k1, collides with a target electron,
wavevector k2, and after collision the electrons have wavevectors k′

1 and k′
2. The frequency

of this process is calculated in the Born approximation. Usually the calculation proceeds by
first summing over the final states and then summing over the target states weighted by the
probability of occupancy. This procedure calculates the overall scattering rate. However, in
many cases the physically meaningful rates are momentum and energy exchange rates, which
means that the order of summation must be such that the final sum should be over one of
the final states suitably weighted by the amount of energy or momentum exchanged. The
following calculation is of the rate of energy exchange.

In order to highlight the effects of dynamic screening, exchange and interference effects
will be ignored and only intrasubband transitions will be considered. In the Born approximation
the scattering rate for the process k1 → k′

1 in an isotropic, Maxwellian distribution is

W(k1,k
′
1) = e4n

8πh̄ANd

∫
e−E2/kBTe

F 2(q)

ε(q, ω)2q2
δ(E′

1 + E′
2 − E1 − E2)2 dk2 (1)

where n is the areal density of electrons, Nd is the effective density of states in the lowest
subband, A is the area, F(q) is the form-factor, h̄q is the momentum transfer and ε(q, ω) is
the permittivity. Integration over k2 is straightforward. The integral over the angle between
k1 and k′

1 can be expressed in terms of a new variable:

u = q

(k2
1 − k′2

1 )
1/2

(2)

so, after some manipulation and including the case for k1 < k
′
1, we obtain

W(k1, k
′
1) = W0

∫ γ−1

γ

F 2(u)

|� |3/2{ε(u,�)/ε∞}2
e�/2

exp{−(|� |/4)(u2 + 1/u2)}
u2{(u2 − γ 2)(1/γ 2 − u2)}1/2

du

W0 = e4nh̄

8π1/2ε2∞m∗(kBTe)2A
γ =

∣∣∣∣k1 − k′
1

k1 + k′
l

∣∣∣∣
1/2

(3)

where ε∞ is the high-frequency permittivity of the lattice and � = (E1 − E′
1)/kBTe is the

normalized exchange energy. Equation (3) is just that derived by Esipov and Levinson [15],
but with the form factor and screening factor included. The energy-relaxation rate for the
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incident electron is then

Q =
∫
(E1 − E′

1)W(k1, k
′
1)k

′
1 dk′

1A/2π. (4)

Dynamic effects enter screening via the factor q · vcm, where vcm is the velocity of the
centre of mass [16]. It is straightforward to show that this factor is nothing but (E1 − E′

1)/h̄,
which is the frequency associated with the energy loss by the incident electron. This follows
from the conservation of crystal momentum and energy. Thus, for intrasubband transitions:

h̄ω = h̄2

2m∗ (k1 + k2) · q = h̄2

4m∗ (k1 + k2 + k′
1 + k′

2) · q

q = 1
2 (k1 − k′

1 + k′
2 − k2) (5)

therefore

h̄ω = h̄2

2m∗ (k
2
1 − k′2

1 ).

The permittivity is composed of the sum of lattice and electronic contributions. In a polar
semiconductor the lattice contribution in the long-wavelength limit is

εL(0, ω) = ε∞ω
2 − ω2

LO + iω!

ω2 − ω2
TO + iω!

(6)

where ! is the decay rate. The electronic contribution can be obtained in the random-phase
approximation neglecting the effects of exchange and correlation. A closed expression has
recently been obtained by Lee and Galbraith [12]. The real part is

εeR = e2m∗nF(q)
2πh̄2Ndq2

[
A+#

(
1,

3

2
,− h̄2A2

+

2m∗kBTe

)
+ A−#

(
1,

3

2
,− h̄2A2

−
2m∗kBTe

)]

A± = 1

2q

(
q2 ± 2m∗

h̄2 h̄ω

)
(7)

where Nd = m∗kBT /πh̄2 is the 2D density of states and #(1, 3/2,−z) is a confluent
hypergeometric function, and the imaginary part is

εeI = e2m∗nF(q)
2πh̄2Ndq2

√
πm∗kBTe

2h̄2

(
exp

{
− h̄2A2

−
2m∗kBT

}
− exp

{
− h̄2A2

+

2m∗kBTe

})
. (8)

The quantity that appears in the expression for the rate is the square modulus:

ε(q, ω)2 = (εLR + εeR)
2 + (εLI + εeI )

2. (9)

The rate for quasi-elastic scattering (|� | � 1), the usual one calculated, cannot contribute
much to the energy relaxation in the presence of static screening. The more relevant rate is
that for substantial inelastic scattering (|� |  1). In this case the exponential in equation (3)
will favour contributions to the integral from u ≈ 1. Putting u = 1 in F(q) and in ε(q,�)
determines q in terms of � via equation (2) and we obtain for a superthermal electron such
that E, E′ and |E − E′|  kBTe

W(k1, k
′
1) = W0

F 2(u = 1) e(�/2−|� |/2)

|� |3/2{ε(u = 1,�)/ε∞}2(γ−1 − γ )
π1/2

2

×[erf[� 1/2(γ−1 − 1)] + erf[� 1/2(1 − γ )]] (10)

so for the downward transition (� > 0)

W(k1, k
′
1) ≈ W0

F 2(u = 1)

|� |3/2{ε(u = 1,�)/ε∞}2(E′
1/kBTe)

1/2

π1/2

2
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Figure 1. Screening function for GaN at 77 K. (a) Whole range; (b) low-energy range.

and for the upward transition (� < 0)

W(k1, k
′
1) ≈ W0

F 2(u = 1) e�

|� |3/2{ε(u = 1,�)/ε∞}2(E1/kBTe)1/2

π1/2

2
. (11)

Downward transitions are heavily favoured. The arguments of the hypergeometric functions
can be written

h̄2A2
±

2m∗kBT
= �

4

(
u± 1

u

)2

and so
h̄2A2

+

2m∗kBT
≈ � and

h̄2A2
−

2m∗kBT
≈ 0 (12)

and the confluent hypergeometric can be approximated by #(1, 3/2,−�) ≈ 1/2� with less
than 17% error for � > 5. With these approximations the integral in equation (4) for the
dynamically screened energy-relaxation rate can be simply evaluated numerically. In order to
avoid unnecessary complications involving well-width, we consider only the 2D case, though
there is no intrinsic difficulty in allowing for the variation of the form factor with energy. It may
be noted that the energy-relaxation time, τE , can be obtained fromQ via τE = E/Q, where E
is the energy of the incident electron, and that it is also effectively the momentum-relaxation
time when the energy exchanged is large, as it is in our calculation.

Neglecting screening altogether (apart from lattice static screening) we return to the
energy-relaxation rate given for the 2D case by Esipov and Levinson [15], namely

Q = e4n

32ε2
s h̄
. (13)

Comparison with the dynamic-screening result can be made by noting that for n = 1, 2 and
5×1011 cm−2,Q = 0.192, 0.383 and 0.960 eV ps−1 respectively, with εs = 9.0ε0. For energy
losses greater than the LO energy comparison should be made with the results when the static
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Figure 2. Dependence of energy-loss rate on initial energy. (a) Whole range; (b) low-energy
regime.

permittivity in equation (13) is replaced by the high-frequency permittivity, ε∞ = 5.35ε0 i.e.
Q = 0.543, 1.086 and 2.715 eV ps−1. It is convenient to refer to these results as those for the
unscreened case (even though there is the usual lattice dielectric response).

We illustrate the remarkable effects of dynamic screening for the case of GaN at 77 K
in the 2D limit. Figure 1 depicts the reciprocal of the square modulus of the permittivity as
a function of the energy exchange with h̄ωLO = 92 meV, h̄ωTO = 71 meV, h̄! = 1 meV,
m∗ = 0.23m0. (These values correspond to the cubic approximation for the wurtzite form,
which has been shown to be valid [17].) There is a striking anti-screening effect for energy
losses at and above the LO phonon energy whereas for energy losses below the TO phonon
energy screening is positive and at the TO energy it is total. The resonance at the phonon
energy is a consequence of the vanishing of the real part of the permittivity. Figure 2 shows the
dependence of the energy-loss rate on initial energy. It is notable that the variation with density
is relatively small, reflecting the fact that, away from resonance, the increased probability of
scattering with increasing density is countered by the increase in screening. The resonance is
limited essentially by the imaginary part of the electronic component of the permittivity. The
latter weakens with decreasing density and consequently the resonance becomes more marked
at lower densities. Figure 3 depicts the much smaller rates obtained assuming static screening.

The dynamic response of the polar lattice produces an order-of-magnitude difference in
the energy-relaxation rates for electrons via e–e scattering above or below the optical-phonon
band. Below the optical-phonon band the screened e–e interaction is still strong enough to
determine an electron temperature, since the competition is only the quasi-elastic scattering of
acoustic phonons. Above the optical-phonon band it has to compete with the emission of an
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Figure 3. Dependence of energy-loss rate on initial energy assuming static screening.

LO phonon which, in GaN, has a characteristic time-constant of 1014 s−1, corresponding to an
energy-relaxation rate of about 9 eV ps−1. The e–e rate is less than this, typically by a factor
of two or more, so it is not possible to assume that an electron temperature is a viable concept
in this range of energies.

As regards the dependence on electron temperature, the real part of the dynamic dielectric
response is temperature independent (if the temperature dependance of the phonon energies and
lifetime are ignored) and so the energy-loss rate in the low-energy regime is energy independent
also. The imaginary part, however, reduces with increasing temperature, so it enhances the
resonance with increasing temperature.

This analysis cannot replace a full numerical treatment, but it is adequate to provide an
approximate quantitative picture of the effect of dynamic screening involving the polar lattice
and to emphasize the invalidity of assuming the unscreened model. It may be noticed that taking
the square modulus of the permittivity conceals the fact that for frequencies lying between the
TO and LO phonon frequencies the interaction between two electrons is attractive. Indeed, in
the absence of losses (imaginary components vanish) the condition ε = 0 indicates a novel
long-lived excitation involving the exchange of virtual phonons between two electrons.

A connection with experiment cannot be made without including the effects of hot
phonons, coupled modes, piezoelectric and other scattering mechanisms. It will also be
necessary to take into account the quasi-2D form factors and the possibility of inter-subband
processes. Our intention here has been limited to pointing out the importance of the dynamic
response of the polar lattice to the electron–electron interaction.
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